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Abstract
When a suspension of hard spheres traverses the freezing volume fraction we
find discontinuous changes in the character of the tagged particle density. In
particular, the velocity auto-correlation function develops a negative algebraic
decay and the fluctuations become subject to interruption. From these, and
the exponent of the algebraic growth of the non-Gaussian parameter, the
difference in mode of relaxation of the density fluctuations between the stable
and metastable colloidal fluids can be quantified. A diagrammatic scheme is
proposed that reconciles the dynamics of phase transitions observed in hard-
sphere colloids.

1. Introduction

It is quite some years ago on a convivial evening that Peter Pusey, in the presence of his
family and myself, announced that they were in the company of two people whose combined
knowledge about Brownian motion was greater than that of any other duo. A curious comment
since, at the time, I understood next to nothing about the subject. However, over the subsequent
years during which Peter and I collaborated, I learnt a great deal from him about Brownian
motion and how to measure it by means of dynamic light scattering. It is my privilege, therefore,
to report some results of light scattering experiments that Peter once suggested to me and to
discuss these in relation to a few particular aspects of his past work.

The first of these is one in which he, in collaboration with George Paul [1], presented
the first statistically significant experimental verification of the so-called ‘hydrodynamic tail’.
This refers to the algebraic decay of the velocity auto-correlation function (VAF) of a molecule
in a liquid, or a particle suspended in it, due to the enhancement of its instantaneous velocity
by the feedback of the liquid’s rotational momentum current [2]. Hydrodynamic theory [3]
shows that the VAF is positive and decays as the power law τ−3/2. By carefully analysing
the displacement statistics of particles in a very dilute suspension, the experiment of Pusey
and Paul reveals a small but systematic, timescale-invariant deviation from normal diffusion
consistent with the predicted non-steady motion, to delay times of 10−3 s.
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Considerations of the dynamical properties of suspensions are generally predicated on
the assumption that random thermal fluctuations in the suspending liquid, which propel
the particles, are dissipated by steady flow [4]. In other words, it is presumed that, over
time intervals where significant movement of the suspended particles is evident, the liquid
is in equilibrium. The question is whether, in view of what hydrodynamics dictates, this
presumption is valid even as a first-order approximation when the particulate phase is not in
equilibrium, i.e., when the volume fraction of the suspension exceeds the freezing value.

This brings me to the second component of Peter’s work, that concerned with the order–
disorder, or freezing–melting, transition in suspensions of hard spheres [4]. The present view
of the mechanism by which this transition occurs is, like the formation of a raindrop, based
on the classical idea of nucleation and growth [5]. This view holds that by a fortuitous but
random sequence of movements, particles assemble into clusters. Clusters big enough that the
thermodynamic bulk and surface forces are balanced form (stable) nuclei on which growth takes
place. Inquiry into the mechanism of the transition has been largely focused on the change in
structure and influenced by the classical view. The spectacular contrast between an amorphous
colloidal fluid and the opalescent crystal [6] may also tend to direct focus exclusively onto the
structural difference between these phases.

The gross macroscopic difference between a fluid and a crystal is that the latter supports
a shear stress while the former does not. The crystal yields along cleavage planes once the
applied stress exceeds a certain value. A colloidal crystal quivers when tapped. This must be
gentle, for vigorous treatment shear melts the crystal. From this perspective, one might pose
the following questions: How do planes, or even lines, of particles come into existence during
crystallization? At what stage of this process does the system develop the capacity to support
phonons?

A third aspect of Peter’s work deals with polydispersity, its measurement [7] and its
influence on the phase behaviour [4]. It appears that the hard-sphere-like polymer particles
that we have used in many of our experiments have, by some stroke of good fortune, just the
right degree of polydispersity. The latter, typically around 5%, causes very significant delay in
the formation of Bragg reflecting crystals but has comparatively little effect on the equilibrium
phase behaviour or the fluctuations [8]. So, this fortuitous degree of polydispersity still allows
one to state, fairly precisely, the volume fraction where the colloidal fluid crosses over from one
that is thermodynamically stable to one that is metastable, while it also causes the metastable
fluid to maintain its integrity long enough for one to study its fluctuations.

Numerous dynamic light scattering experiments, performed in Malvern [9],
Edinburgh [10] and Melbourne [11], have studied the number density fluctuations in these
suspensions. They show that, as the volume fraction is increased, the decay of the fluctuation
auto-correlation function becomes slower, deviates more and more from exponential and
develops a two-stepped decline to the noise floor. The glass transition (GT) is located at the
volume fraction where the second step is arrested. However, there appears to be no discontinuity
or qualitative change in the correlation function when the freezing volume fraction is traversed.
This lack of an obvious change gives the impression that there is no fundamental difference
between the fluctuations in stable and metastable fluids, and lends support to the view,proposed
by mode-coupling theory [12], that the GT is purely dynamical in origin. It also supports the
idea that nucleation of the crystal phase is entirely accidental. We must wonder, nonetheless,
whether we have missed something.

The experiments to which I referred in the opening paragraph measure the self-
intermediate-scattering function (ISF), the correlation function of tagged particle density
fluctuations, in a suspension of hard spheres. The analysis of the data employs various schemes
to separate the fast and slow components of the fluctuations. Our purpose is twofold; firstly, to
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expose aspects of the fluctuations that change their character as the freezing volume fraction
is traversed and, secondly, to see whether all aspects of the fluctuation are consistent with the
assumption that thermal fluctuations are dissipated by steady motion.

2. Self-intermediate-scattering function

The quantity of interest is the self-ISF

F(q, τ ) = 〈exp[iq · �r(τ )]〉. (1)

Here q is the wavevector and �r(τ ) is the particle displacement in the time interval τ . The
angular brackets denote the average over an ensemble. The right-hand side of equation (1)
is then rotationally invariant and the cumulative function, ln F(q, τ ), can be expanded as
follows [13]:

ln F(q, τ ) = −〈�r2(τ )〉q2

6
+

1

2
α(τ)

(
q2

6

)2

+ · · · . (2)

The successive cumulants 〈�r2(τ )〉 and

α(τ) = 3
5 〈�r4(τ )〉 − 〈�r2(τ )〉2, (3)

respectively, represent the mean squared displacement (MSD) and the first deviation of the
particle displacement distribution from Gaussian.

Details of the experimental method are described elsewhere [14]. However, it must be
mentioned here that, over the range of wavevectors 1.3 � q R � 3.8, F(q, τ ) showed no
systematic deviations from the expansion in equation (2) to quadratic order in q2.

It is evident from the definition, equation (1), that the self-ISF measures the ensemble
average of fluctuations in the scattered light field resulting from sequences of phase-preserving
steps in the direction of the vector q. So long as such sequences occur with random probability
the ISF decays exponentially:

F0(q, τ ) = exp[−Dq2τ ]. (4)

Here the diffusion coefficient, D, characterizes the linear growth of the MSD due to entirely
random steps; 〈�r2(τ )〉 = (6)Dτ . Any aspect of the fluctuations that deviates from
equation (4) will be referred to as ‘systematic’.

It follows from equation (2) that the Gaussian self-ISF

F (G)(q, τ ) = exp[−〈�r2(τ )〉q2/6], (5)

is recovered in the limit of infinite spatial integration (q → 0), irrespective of the suspension
concentration.

The VAF,

Z(τ ) = d2

dτ 2
〈�r2(τ )〉, (6)

exposes any systematic movement superposed on random movement.

3. Microscopic perspectives

Before discussing the experimental results we turn to several molecular dynamics studies.
These give a microscopic view of how systematic movement comes into existence. They may
also provide a clue about how one might identify such movement spectroscopically.
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Molecular dynamics simulations by Rahman [15] showed that the displacement of an
atom in a liquid is favourably directed towards the elongation of its first coordination shell.
They also show that this correlation, between the magnitude and direction of an atom’s
displacement, gives rise to a negative and monotonically decaying velocity correlation which
persists considerably longer than the collision-induced back-scatter. As such, this tendency of
the movement of particles to be confined to one dimension is independent of the microscopic
dynamics, be they ballistic or diffusive.

A picture emerging from this is that an atom exploits the larger-than-average gap created by
the movements of its neighbours. The gap that the atom leaves behind it can then be exploited
by another atom, and so forth. So as the observation interval increases, encompassing an
increasing number of collisions or moves by the atoms, a file or queue of atoms moving in
concert becomes evident. Numerous more recent microscopic studies show directly this sort
of cooperation among particles in a dense fluid [16].

The ultimate inference Rahman made from his computations was that anharmonic rattling
of particles in one momentarily well-defined plane creates the gaps that allow ‘slip’ in
the direction perpendicular to this plane. In other words, an impediment to the decay of
the local or microscopic longitudinal particle current by (anharmonic) packing constraints
creates a transverse current. This local symmetry breaking manifests itself by a slowly and
monotonically decaying negative VAF.

The molecular dynamics studies of Alder and Wainwright [2] show that the oblique
component of the momentum transfer gives, after many collisions, a positive feedback to
an atom’s velocity. This effect of the finite size of atoms is manifested in the continuum by
the double vorticity in the Navier–Stokes equation.

The computer experiments of Alder and Wainwright and Rahman respectively demonstrate
the microscopic origins of positive and negative sources of feedback on a particle’s movement.
Both are consequences of packing constraints and they both act to maintain the direction of a
particle’s velocity. This indicates ubiquity of movement in files and that these files may have
a purpose.

In a fluid where the atomic collisions are instantaneous, the two feedback mechanisms
may have comparable timescales and delaying influences. However, in a suspension one
anticipates that the negative feedback to a particle’s movement due to the direct effect of
packing constraints of its neighbours will be delayed relative to the positive feedback of the
vorticity that the particle creates in the suspending liquid.

4. Results and spectroscopic perspectives

A detailed account of the measurements of the self-ISF will be presented elsewhere [17]. Only
an abridged version of the results appropriate to the issues raised in section 1 is shown here.
The freezing, melting and GT volume fractions of the hard-sphere suspension considered here
are φ f = 0.494, φm = 0.54 ± 0.005 and φg = 0.575 ± 0.005, respectively [6]. Thus, the
volume fraction φ f delineates colloidal fluids in stable and metastable equilibrium.

In the results below, all distances are expressed in units of the particle radius, R (=200 nm),
and delay times in units of the Brownian characteristic time, τb = R2/(6D0) (=0.021 s), where
D0 is the diffusion coefficient of an isolated sphere.

Figure 1 shows typical results for the ISF measured at the wavevector given by q R = 1.3.
This value of q R should be read relative to the position, q R ≈ 3.5, of the primary maximum
in the static structure factor. Of course, as explained in previous work [14], scattering from
the structure is suppressed, so only the tagged particle density fluctuations are measured. By
fitting the quantity exp(−Dsq2τ ) to the initial decay of F(q, τ ), one determines the short-
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Figure 1 . Self-ISF, F( q, τ ) (+ signs); the component of the ISF, exp[− Dsq2τ ], due to random
fluctuations (crosses); systematic component, T ( q, τ ) = F( q, τ ) − exp[− D s q2τ ] (dots);
(a) φ = 0.30, (b) φ = 0.48, (c) 0.57. The dashed vertical line passes through the maximum
in T (q, τ ).

time self-diffusion coefficient, Ds [14]. The latter characterizes the component of the thermal
fluctuations dissipated by steady motion. Ds decreases by approximately a factor of 10 when
the volume fraction is increased from zero to about 0.5. In the results, discussed below, we
identify several crossover times that are independent of φ. Thus, we will encounter aspects of
the dynamics that cannot be reconciled in terms of steady dissipation of thermal fluctuations.

For now we consider the difference

T (q, τ ) = F(q, τ ) − exp(−Dsq2τ ) (7)

also shown in figure 1. This quantity filters out the effect of the random fluctuations and
exposes a slower mode of coherent fluctuations. We refer to this slower, non-random mode
as ‘systematic’ and the objective here is to identify its statistical properties. The main feature
to note is that, for the lowest volume fraction (φ = 0.30, figure 1(a)), random fluctuations
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Figure 2. Logarithm of the MSD versus logarithm of delay time at the volume fractions indicated.
The arrow points to the inflection (at τm ) in each curve. The solid curves are fits of the function
defined in equation (9) to the data. The dashed line is a line of unit slope.

stimulate and continue to be available to dissipate the systematic mode, T (q, τ ). This overlap
of random and systematic fluctuations occur as long as φ < 0.48. Once this volume fraction is
exceeded, random fluctuations are integrated to the noise floor over the interval where T (q, τ )

attains its maximum. It is apparent, from figure 1(c), that the fully developed systematic mode
then waits before it decays. These results suggest a change at φ = 0.48, i.e., around φ f , in the
process of coarse-graining of the systematic mode.

It must be pointed out that the experimental results are based on ensemble averages of the
phases, q · �r, in equation (1). Thus, we can draw statistically significant inferences about
the density fluctuations although their statistics are generally not normal.

Typical results on the MSD are shown in figure 2. The double-logarithm representation
exposes those regions where normal linear diffusion obtains by lines of unit slope, i.e.,
〈�r2(τ )〉 ∝ τ . An arrow points to the delay time, τm , where a curve in figure 2 has an
inflection, i.e., where the systematic mode has its strongest projection on, and incurs the
greatest delay in, the growth of the second moment of the tagged particle density fluctuations.
The root mean squared (RMS) distance, Rm , is defined by 〈�r2(τm)〉 = R2

m .
The quantities Rm and τm are shown in figure 3 in terms of φ. One sees that Rm decreases

linearly with φ up to 0.48 and then exhibits no further systematic change. Contrasting with
this, τm is independent of φ up to 0.52 and then increases sharply. Within the resolution of the
volume fraction of the samples in these experiments, the results for Rm suggest a structural
change in the systematic mode at the freezing volume fraction, φ f ; once this volume fraction
is exceeded the systematic mode submits to no further compression. The result for τm hints at
a change in dynamics at the melting volume fraction, φm .

Another quantity that we consider is the slope of the tangent to the point (Rm, τm) on each
of the curves in figure 2:

ν =
[

d log〈�r2(τ )〉
d log(τ )

]
τ=τm

. (8)

Note, from figure 4, that ν passes through the value 1/2 around φ f and converges to zero at
the GT.

In the index ν we read the statistical manifestation of the tendency, exposed in Rahman’s
computations, of particles to cooperate by moving in queues. This assertion is based on the fact
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Figure 3. Delay times τv (circles), where the VAF has its minimum, and τm (open diamonds),
where the MSD (figure 2) has the inflection. Delay times are given by the right-hand axis. The
MSD 〈�r2(τm)〉 = R2

m (filled diamonds). The dashed vertical lines are drawn at the freezing and
melting volume fractions. The continuous lines are drawn as a guide.
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Figure 4. The index ν, defined in equation (8). The exponent δ of the systematic mode—the first
term in equation (9). The index γ of the non-Gaussian parameter. The continuous curve is the
function given by equation (21) and the dashed line is the line of best fit through the index γ . The
dashed vertical lines are drawn at φ = φ f and φ = φg . See the text for details.

that the MSD of particles in single file increases in proportion to the square root of the delay
time [18]. This asymptotic result, recently confirmed experimentally [19], obtains after the
contribution from random movement of the particles has decayed to the noise floor. Thus, the
only movement that survives coarse-graining to τm at volume fractions exceeding the freezing
value is coherent movement in one dimension.
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Figure 5. The VAF, Z(τ ), at the volume fractions indicated. For clarity, each successive data set
has been translated along the log τ axis by two.

It is also well known that the metastable fluid distinguishes itself structurally, from the
stable fluid, by a narrow peak in the radial distribution function that corresponds to the contact
limit of three (or more) collinear spheres [20]. In consideration of this and the observation that
Rm is independent of φ (for φ > φ f ) we infer that in the metastable fluid the systematic mode
comprises a linear queue of three (or more) particles in contact.

The VAFs, Z(τ ), are shown in figure 5. The initial decrease in these, just discernible from
the noise, indicates that memory of the particle’s (initial) velocity, or momentum, persists until,
at τv , it is overwhelmed by the effects of interactions with its neighbours. For a completely
isolated particle in the liquid we would expect, in accordance with the experiment of Pusey and
Paul [1] and the prediction of hydrodynamics [3], Z(τ ) to remain positive and decay as τ−3/2.
At finite volume fraction, velocity reversals caused by packing constraints press down on the
influence of this non-steady movement. This results in the more slowly decaying negative
VAF which, according to our interpretation of Rahman’s computations in section 3, is the
manifestation of the transverse mode.

There is no indication, in figure 5, that the velocities are uncorrelated. In fact, the position
of the minimum of the VAF, at τv (≈10−2), is approximately four orders of magnitude larger
than the characteristic decay interval based on the assumption that thermally stimulated particle
movement is dissipated by steady flow [4]. It appears, therefore, that the effect of vorticity or
non-steady flow cannot be ignored. Moreover, as indicated in figure 3, this effect starts to couple
to systematic velocity reversals over an interval, τv, that shows no systematic variation with φ.
It also appears that this coupling is maintained until, at τm , the cooperative consequences of
velocity reversals are fully manifested. From figure 3 one can determine that the delay, τm/τv ,
between the crossover times, τm and τv , is approximately three decades and independent of φ

below φm . This transmission delay increases sharply when φ exceeds φm .
The above inference has two consequences. First, there is no transmission delay between

velocity reversals and the emergence of cooperation among the particles, i.e., τv = τm , when
there is no suspending liquid and collisions among the particles are instantaneous. Second, the
positive feedback, due to the coupling between a particle’s momentum and its displacement,
enhances the efficiency relative to random with which configuration space is explored.
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Figure 6. The VAF, expressed as log10(−Z(τ )). Each successive data set has been translated
along the log τ axis by one. Volume fractions and the slope (µ) of the best-fitting straight line are
indicated. The dashed line has slope −1.

Before confirming these consequences we continue consideration of the VAF. The
present experiments extend over a considerably larger dynamical window than Rahman’s
computations. One sees from figure 5, and so much better in figure 6, how the local symmetry-
breaking fluctuations, observed by Rahman, evolve over longer delay times.

For the higher volume fractions, φ � 0.48, the results can be described by power laws,
Z(τ ) ∼ −τ−µ, at long delay times. The best-fitting straight lines, from a lower limit of
log(τ ) = 0, give an index µ that increases from about 1.6 to about 2.0 as φ is increased
towards φg . In view of the arbitrary lower limit and the noise on the data, there is considerable
uncertainty in this exponent. However, identification of a power law in the VAF suggests
that in addition to a normal diffusing term, linear in delay time, the MSD has a contribution
proportional to τ δ , where δ = −µ + 2. So, a possibly more accurate estimate of the index µ

(or δ) is obtained by fitting the expression

〈�r 2(τ � τm)〉 =
[

C

(
τ

τm

)δ

+

(
τ

τm

)](
R2

m

C + 1

)
, (9)

to the measured MSD for τ � τm . This consistency check of the data uses the values of Rm

and τm , shown in figure 3, and treats C and δ as free parameters. The fits are shown in figure 2.
The index δ is shown in figure 4, and the parameter C in figure 7. From equations (8) and (9)
one derives the relationship ν = (δC + 1)/(C + 1). The estimate of ν obtained here agrees
with that obtained above directly from the MSD.

Given that δ < 1, the diffusion coefficient obtained from equation (9) by taking the limit
τ → ∞ is

Dl = R2
m

τm(C + 1)
. (10)

The results of this estimate of the long-time self-diffusion coefficient are shown in figure 7.
This analysis suggests that in the metastable colloidal fluid the systematic mode,

characterized by the amplitude C and exponent δ, maintains its integrity as an integral
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Figure 7. The logarithm of the coefficient C (circles), defined in equation (9). The logarithm of
the inverse long-time diffusion coefficient Dl (triangles), given by equation (10) for φ � 0.48 (to
the right of the arrow) and equation (11) for φ < 0.48 (to the left of the arrow). The small closed
symbols correspond to values of Dl from [14].

component of the fluctuations to the upper limit of the experimental time window. By this
we mean that movement of the systematic mode, or structural rearrangement of particles in
a particular region, is non-random. The unavailability of random fluctuation to relax the
systematic mode was also intimated from figure 1. This being the case, identification of a
long-time diffusion coefficient implies the existence of statistically independent regions in the
scattering volume. The coefficient, Dl , characterizes coarse-graining by averaging over these
regions.

Increasing the duration of the measurement to the extent that the first term in equation (9)
is negligible compared to the second may ultimately achieve an average over an ensemble
of all possible displacements. However, such extension sees the onset of crystallization, i.e.,
the emergence of structures of size comparable to the scattering volume. Thus, eventual
crystallization of the sample limits the time window over which fluctuations in the metastable
fluid can be measured with statistical significance.

We now turn to volume fractions below 0.48. In these cases no power law is evident in
the VAF (figure 6). However, we can still apply equation (9) by assuming that the systematic
mode dissipates locally. This local equilibration, which by definition must occur in a stable
fluid, can be invoked by allowing the index δ to approach unity from below. The diffusion
coefficient obtained in this limit is

Dl = R2
m

τm
. (11)

The results for Dl obtained here are consistent with previous estimates obtained from the MSD
at very long delay times (see figure 7).

Note that for the colloidal fluid in stable equilibrium the long-time diffusion coefficient
is fully determined at τm and does not explicitly require the limit τ → ∞. Equations (10)
and (11) indicate that Dl is determined by the mean squared amplitude, R2

m , of the systematic
movement of the particles and the delay, τm , of the non-steady response of the suspending
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Figure 8. The logarithm of P(q, τ ), defined in equation (13), for τ < τm (figure 8(a)) and τ > τm

(figure 8(b)). Data are shown for volume fractions 0.48 (diamonds), 0.54 (circles), 0.57 (squares).
The small closed symbols are results for lower (φ < 0.45) volume fractions. The curves in
figure 8(a) are given by equation (14) for the values of β indicated. In figure 8(b) the continuous
lines are linear fits to the upper portions of the data and the broken curve corresponds to a single-
exponential decay of the ISF.

liquid. The amplitude, C , of the systematic mode gives the metastable colloidal fluid an added
impediment to diffusion.

Having shown that τm is the integration interval over which systematic movement is most
strongly projected, we now use it to discriminate fast from slow fluctuations. The procedure has
been employed in analysis of the (coherent) ISF by mode-coupling theory [21]. But, unlike
the separation shown in figure 1, this procedure makes no assumption about the statistical
properties of the fast fluctuations. From Rm , the amplitude

f (q) = F(q, τm) = exp[−q2 R2
m/6] (12)

is calculated for the wavevector q R = 1.3. (As will be shown elsewhere [17], the Gaussian
limit (equation (5)) is a good approximation of the self-ISF at this value of q R.) The quantity

P(q, τ ) =
∣∣∣∣ F(q, τ ) − f (q)

1 − f (q)

∣∣∣∣ (13)

is shown in figure 8(a) for τ < τm and figure 8(b) for τ > τm . Figure 8(a) indicates that, for
φ up to 0.52, the results for P(q, τ < τm) approximately coincide and they can be described
by the exponential

P(q, τ < τm) ∼ exp[−bτβ], (14)

with b ≈ 0.5 and β = 1.
It was asserted above that memory of a particle’s momentum is maintained for an interval

that extends to τm . The exponential decay, seen in figure 8(a), implies that P(q, τ < τm)

captures the full ensemble of possible manifestations of this memory. Thus, for φ � 0.52
memory of a particle’s initial momentum is lost over the interval τm . This loss of momentum
memory is consistent with the notion of a diffusing vorticity in the liquid [2]. We also see that,
below approximately φm , τm and P(q, τ < τm) are independent of φ. This suggests that the
vorticity in the liquid couples to a structure that is common to all volume fractions below φm .
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Figure 9. The non-Gaussian parameter, defined in equation (3), at the volume fractions indicated.

For larger φ, P(q, τ < τm) becomes stretched; the parameter β in equation (14) required
to describe the data decreases to 1/2 as φ is increased towards φg. According to the above
explanation, this implies that the vorticity couples to another structure whose relaxation time
increases with φ. Moreover, the interval τm no longer captures all possible manifestations of this
coupling. When φ is very close to φg, ambiguity in the estimate of Rm precludes estimation of β.

In figure 8(b) one observes that the decay, P(q, τ > τm), of the slow fluctuations becomes
exponential at long times for φ < 0.48. We infer here that in stable equilibrium the slow
fluctuations equilibrate because they see the fast fluctuations as random. However, for larger
φ the slow decay maintains a power law

P(q, τ > τm) ∼ τλ (15)

to the noise floor. Also, the index of the power law, λ = 0.7 ± 0.05, shows no systematic
variation with φ. Thus, there appears to be a universal source of (negative) feedback to a
particle’s movement in the metastable colloidal fluid. The power-law form of P(q, τ > τm)

also suggests that there is a contribution to the MSD, although possibly one that is latent,
proportional to log(τ ).

The non-Gaussian parameter α(τ), shown in figure 9, provides another perspective which
lends support to some of the above inferences. The first of these derives from the location of
the minimum in α(τ) which, within experimental uncertainty, occurs at τm . Thus, for τ < τm ,
there is a monotonic increase in the efficiency, relative to random, with which particles explore
configuration space. This confirms one of the consequences asserted above, that the positive
feedback of the liquid’s vorticity to the particle motion is maintained up to τm . It was also
suggested that for ballistic hard spheres, τv = τm , resulting in a positive α(τ) at all τ . Recent
molecular dynamics studies of hard-sphere fluids confirm this to be the case [22].

The efficacy of the above feedback will be attenuated by a harmonic component in the
interaction between the particles. Theory shows that the displacement statistics of a particle
in a harmonic potential is Gaussian [23]. Therefore, the negative values of α(τ) are also
indicative of anharmonic confinement, as expected for hard-sphere particles. However, since
the RMS displacement, Rm , is appreciably greater than the average gap between the particles,
the simple concept of a particle confined by its instantaneous neighbours is not adequate.
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Figure 10. The logarithm of the non-Gaussian parameter at the volume fractions indicated. Best-
fitting straight lines for the upper portions of the data are also shown. Half the value of the slope
of each line is shown in figure 4.

Another interpretation of figure 9 can be given from the perspective of the particles,
without explicit reference to the non-steady response of the liquid. Velocity reversals,
evident for τ > τv , when imposed by purely reflecting (anharmonic) boundaries, increase the
proportion of small displacements relative to that of a random distribution. This causes the term
〈�r2(τ )〉2 to increase faster than 〈�r4(τ )〉, so α(τ), defined in equation (3), initially decreases.
With increasing delay time the cooperative consequences of these velocity reversals become
increasingly evident. By ‘cooperation’ we mean that the proportion of large displacements is
greater than normal, giving added weight to 〈�r4(τ )〉 and causing α(τ) to increase.

We now turn to the second aspect of the non-Gaussian parameter. In figure 10 one sees
that at long delay times α(τ) can be approximated by a power law, Gτ 2γ . The exponent γ is
shown in figure 4.

This power-law behaviour may be explained as follows. First it is proposed, for the
suspension in stable equilibrium (φ < φ f ), that for large τ both 〈�r4(τ )〉 and 〈�r2(τ )〉2

increase in proportion to τ 2. The currently limited data are not incompatible with this.
Cancellation of these moments to make α(τ), defined in equation (3), vanish at all τ occurs
only for an infinitely dilute suspension. At finite volume fraction, packing constraints lead to
cooperation which, at large τ , results in a constant net lead of the fourth moment over (the
square of) the second. The inference is that a divergence of α(τ) in proportion to τ 2 indicates
decay of the systematic mode by random fluctuations. This is consistent with the argument,
based on the establishment of local equilibrium, that led to equation (11) for the long-time
diffusion coefficient in the thermodynamically stable suspension. Despite the divergence of
α(τ), one sees from equation (2) that an exponentially decaying ISF is still recovered in the
thermodynamic limit, for a suspension in stable equilibrium; limits are taken in the order
q → 0, τ → ∞, such that q2τ → 0.

In the metastable suspension the exponent (2γ ) of the power law that describes α(τ) at
large delay times is less than two. As argued already, equilibrium is not established locally
in the metastable fluid and the only way of obtaining statistically significant results is by
averaging over statistically independent regions in the scattering volume. The effect of this
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apparent randomization can be superposed on the fluctuations by adding, to the second and
fourth moments, terms that increase respectively with delay time as Dτ and Eτ 2. That, for
τ > τm , the MSD can be described by equation (9) confirms these suggestions in part. Further
confirmation is obtained by rewriting equation (9) as

〈�r2(τ )〉 = Aτ δ + Dτ, (16)

and the fourth moment as

〈�r4(τ )〉 = Gτ 2γ + Eτ 2. (17)

Substitution of these expressions into equation (3) gives

α(τ) = 5
3 Gτ 2γ − A2τ 2δ − 2ADτ 1+δ + ( 5

3 E − D2)τ 2. (18)

The coarse-graining or randomization introduced here, unlike that induced by random thermal
fluctuations, is not subject to packing constraints and the concomitant imbalance of the second
and fourth moments. Consequently, its contribution to the second and fourth moments must be
balanced in a manner that nullifies the last term in equation (18). It has already been established,
for the metastable suspension, that δ < ν � 1/2. Thus the emergence of a (positive) power
law, of index 1 < 2γ < 2, in α(τ), is consistent with cancellation of the coefficients of τ 2

and the condition 2γ > 1 + δ. The results for the indices, shown in figure 4, comply with this
condition. Conversely, the observation of a power-law increase of α(τ) with index less than
two indicates that the decay of the ISF is effected by averaging over independent localities
in the scattering volume rather that by local randomization. This conclusion is consistent
with that based on the MSD; in the metastable fluid one explicitly relies on averaging over
independent regions because, locally, the systematic mode remains intact.

The line of best fit to γ versus φ (figure 4), through all except the lowest volume fraction
for which α(τ) has been measured, passes through the values γ = 1 and 1/2 at φ1 = 0.5±0.01
and φ2 = 0.575 ± 0.005. This line extrapolates to γ = 0 at φ3 = 0.64 ± 0.01. The values of
φ1, φ2 and φ3 are consistent with the observed freezing, GT and random close-packing volume
fractions.

Thus, at φg there appears to be another change of mechanism by which fluctuations decay.
We return to the MSD for a closer inspection of this. We see from figure 7 that the long-time
diffusion coefficient (equation (10)) converges to zero as φ approaches φg. Thus, at the GT,
macroscopic diffusion stops. Figure 4 shows that the index δ, the power-law exponent of the
systematic mode in equation (9), also converges to zero. However, the VAF still appears to
maintain a power-law decay, Z(τ > 1) ∼ τ−2. One way to reconcile this form of the VAF and
the approach of the exponent δ to zero, is for a contribution proportional to log(τ ) to emerge in
the MSD. Thus, it appears that, as the GT is approached and both random and systematic move-
ment arrest, the latent contribution, log(τ ), identified in figure 8(b), emerges. This also means
that after the term proportional to τ 2γ , in equation (18), the third term, now proportional to
τ log τ and negative, is the next fastest. The emergence of the latter gives an explanation for the
increasing curvature, seen (in figure 10) in the long-time form of α(τ), when φ approaches φg .

5. Solidification dynamics

In the preceding section we identified a systematic or cooperative mode of movement of
particles in which the magnitude and direction of displacement are correlated. This mode has
the same statistical manifestation as the symmetry-breaking transverse mode first identified in
molecular dynamics simulations of Rahman. We inferred further that when the colloidal fluid
is in stable equilibrium this mode dissipates locally. When the volume exceeds the freezing
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value the systematic mode remains intact to the upper limit of the experimental time window.
In this case the systematic mode comprises a queue of particles in contact. It is plausible that
these queues are precursors of the crystal phase.

Crossover times, τv and τm , and the negative non-Gaussian parameter point to a coupling
of the liquid’s vorticity to a systematic movement of particles by virtue of a structure that is
the same for all volume fractions below the melting value. Therefore, we seek to determine
a universal aspect of systematic movement that is compatible with the hydrodynamics of the
suspending liquid as well as packing constraints among the particles.

It is also evident from the above that the characteristics of the MSD at delay time, τm , play
a central role. At this time the MSD can be expressed as

〈�r2(τ )〉 ∝ τ ν. (19)

At τm there seems to be a dynamic balance between the collective response of the particles to
their packing constraints and the non-steady response of the liquid.

We now introduce a scheme, based on the index ν, that allows our observations on hard-
sphere suspensions to be collated and address the above questions about crystallization and
the influence of the liquid’s vorticity.

There are two values of ν with obvious meaning: ν = 1 indicates random movement, i.e.,
no queueing; and ν = 0 indicates arrest. An interpretation used to describe fluctuations in
other types of complex behaviour points to two further key values of the index ν [24]. One,
ν = 1/2, indicates that the variable �r fluctuates by virtue of random interruption. The other,
ν = 1/3, indicates that �r is subject entirely to anti-correlated interruption. In other words,
movement of a queue in a given direction causes a disturbance which, after some delay, forces
the queue in the opposite direction.

On the basis of the above characteristic values of ν, it is possible to diagrammatically
represent the dynamical response to (osmotic) compression of the suspension by drawing
curves, ν(k)

j (φ) in the ν–φ plane, determined by the dimension, j , of the space to which particle
displacements are confined. These curves are subject to the following rules and definitions:

(i) The index ν is an indicator of the efficiency with which configuration space is explored
or entropy is gained.

(ii) The quantity 1−|ν(k)
j −ν

(l)
i | gives a measure of the probability of a transition (or feedback)

between curves ν
(l)
(i)(φ) and ν

(k)

j (φ). Thus, a given curve feeds back positively to one below
it and negatively to one above it.

(iii) Where a given curve intercepts the value 1/2, the mode of exploration of configuration
space that it represents is metastable to the nearest curve that lies above it. Where a curve
intercepts the value 1/3, it is unstable. An exception to the last rule will be introduced
later.

(iv) A (feedback) loop is stable, or equilibrates, when it reaches or intercepts the value ν = 1.

Consider the curves drawn in the lower half of figure 11. The straight line,

ν
(1)

3 =
(

1 − φ

φc

)
, (20)

between the points (φ = 0, ν = 1) and (φc = 0.74, ν = 0) is the line of (tagged particle)
density fluctuations in three dimensions. Regular close packing of hard spheres at the volume
fraction φc = 0.74 is assumed. This simple isotropic dynamical response to compression of
the suspension encounters interruptions, ν = 1/2 at φ = 0.37 and ν = 1/3 at φ f a = 0.4933.

A second curve

ν
(1)

1 =
(

1 − φ

φga

)1/3

(21)
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Figure 11. The bold lines indicate the dependence of the index ν on the volume fraction for
tagged particle density fluctuations in one, two and three dimensions, respectively expressed by
ν

(1)
1 (dashed curve, equation (21)), ν

(1)
2 (dash–dot curve, equation (22)) and ν

(1)
3 (continuous line,

equation (20)). The light line is the momentum line ν
(2)
3 (equation (23)). Fine horizontal lines are

drawn for ν = 1/3, 1/2 and 1. Dashed vertical lines are drawn successively at φ f a = 0.4933,
φma = 0.5429 and φga = 0.5638. The heavy dots are vertices of loops A, B and C. See the text
for an explanation.

restricts displacements to one dimension. Here we assume that the instability of isotropic
clusters, at φ f a , must be relieved by a transition to movement in a space of lower dimension.
Guided by Rahman’s computations, we assume that this is achieved by slippage into one
dimension. The volume fraction, φga = 0.5638, is selected to force equation (21) through
the point (φ f a, ν = 1/2). As a consequence, the line ν

(1)

1 reaches an instability, ν = 1/3, at
φma = 0.5439.

Having impeded movement in one and three dimensions, the remaining possibility is
confinement to planes. This is represented by the curve

ν
(1)

2 =
(

1 − φ

φX

)2/3

. (22)

When equation (22) is forced through the point (1/2, φma) it also passes through the points
(1/3, 0.6782) and (0, φX = 0.8398).

Several points of agreement with observation should be noted: the values φ f a =
0.4933 and φma = 0.5439 agree with the freezing and melting values based on computer
simulation [25] and observed experimentally [6]. Extrapolation of the line ν

(1)

1 into the
entropically unstable region to ν = 0 gives a GT at φga = 0.5638. The experimental GT
is located at φg = 0.575 ± 0.005. The proximity of the curve ν

(1)

1 (φ) to the measured index ν

(see figure 4) confirms that particle movements confined to one dimension make the dominant
contribution to the MSD when observed over the time interval τm . The differences between
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the experimental values of ν and the location of the GT and those mapped out in figure 11
are small but significant. Below, we address the issue of polydispersity which explains these
differences, at least qualitatively.

The structural or entropic instabilities, at the volume fractions φ f a = 0.4933 and
φma = 0.5439, while symptomatic of freezing and melting, do not in themselves explain
how a three-dimensional crystal forms. In fact, formation of three-dimensional structures is
impeded at φ f a . Furthermore, extrapolation of the line of planes, ν

(1)

2 (φ), leads to unphysical
volume fractions.

From this scheme it is apparent that entropy alone is not able to carry the metastable fluid
to the equilibrium crystal.

The scheme proposed so far does not account for the coupling between particle movement
and the non-steady response of the liquid. To incorporate the latter, figure 11 is augmented
with the line representing isotropic momentum fluctuations:

ν
(2)

3 = 2

(
1 − φ

φc

)
. (23)

Statistically, unimpeded ballistic motion is represented by the value, ν = 2, of the index in
equation (19). At φc no motion is possible and ν = 0. We assume that the particles are
perfectly buoyant and that the suspending liquid is a continuum. The latter means that the
line ν

(2)

3 (φ) is unaffected by packing constraints among the particles and can pass through the
values 1/2 and 1/3 uninterrupted. This is the exception to rule (iii) anticipated above.

There are numerous possible (feedback) loops. We consider three that have a (lower)
vertex on the line, ν = 1/3. The first of these encompasses curves ν

(2)

3 and ν
(1)

1 , and vertices
(φ = 0, ν = 2), (φma, ν

(2)

3 (φma)), (φma, 1/3) and (0, 1). This may be read from figure 11 as
loop A through points 1, 2, 3 and 4. In this we have a schematic illustration of the positive
feedback provided by isotropic momentum fluctuations to the line ν

(1)

1 (φ). Recall that the
latter represents systematic particle movement in one dimension and that actual value of ν,
along any curve, represents the efficiency of configuration space traversal. Thus, the value
of ν along the curve ν

(1)

1 (φ) embodies contributions from concerted and random motion of
particles in a file. Only the concerted movement, that for which 〈�r2(τ )〉 ∝ τ 1/2, benefits
from the feedback. The resulting VAF must, therefore, be positive and proportional to τ−3/2.

By rule (iv), loop A is stable. This merely states that momentum fluctuations equilibrate
for φ < φma . The results for P(q, τ < τm), in figure 8(b), indicate that this equilibration is
achieved in the interval τm .

The second loop encompasses ν
(1)

1 (φ) and ν
(1)

3 (φ), and passes through (0, 1), (φ f a, 1/3)
and (φ f a, 1/2). This is indicated in figure 11 as loop B through points 4, 5 and 6. By the
reasoning used above, isotropic density fluctuations feed into the line ν

(1)
1 (φ). In this case,

however, the feedback is negative since the curve ν
(1)
3 (φ) lies below ν

(1)
1 (φ) and, therefore,

presents a less efficient traversal of configuration space. Now the VAF is negative and also
proportional to τ−3/2.

For the colloidal fluid in stable equilibrium (φ < φ f a), these loops A and B share the
boundary ν

(1)
1 (φ). It is apparent from the results of section 4 that the movement of particles,

in response to their packing constraints, conspires with the non-steady response of the liquid
in manner that leads, as illustrated by their common boundary at τm (figure 11), to the most
efficient exploration of configuration space. Thus at τm the two feedback mechanisms cancel
and, as demonstrated by the data, there is no algebraic persistence of the VAF. As mentioned,
for τ > τm momentum fluctuations are random and these dissipate the queues. Consequently,
and in compliance with rule (iv), loop B is stable. At large delay times the ISF and correlation
function, P(q, τ > τm), of the slow fluctuations decay exponentially.
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We now turn to the coexistence region, φ f a � φ � φma . As before, we read from the
normal exponential decay of P(q, τ < τm) that, up to φm , momentum fluctuations are random
over the interval τm . Thus the boundary ν

(1)
1 (φ) between φ f a and φma is an essential aspect of

the dynamics in the coexistence region and, consequently, the dynamics of the particles is de-
termined by the loop (C) with vertices (1/3, φ f a), (1/2, φ f a) and (1/3, φma). Loop C (through
points 5, 6 and 3) does not intercept the line ν = 1 and, therefore, the unstable isotropic clusters
at φ f a and unstable files at φma are unable to equilibrate without transition to the momentum
line. Such transitions are random. But they present a process by which entropically unstable
structures acquire the binding energy that stabilizes them. The randomness of these stabiliz-
ing transitions would also render the colloidal fluid in the coexistence region metastable to
crystallization. Furthermore, according to rule (ii) above, a transition from unstable files to
the momentum line (point 3 to 2) is more probable than a transition from the unstable clusters
(point 5 to the point ν

(2)

3 (φ f a)). This suggests that, in the coexistence region, crystallization
occurs by alignment and registration of files.

Given that loops A and B are stable in the sense that they provide the dynamical route to
equilibrium, they cannot be traversed by another line. Therefore the line of planes ν

(1)
2 (φ) is

statistically not allowed. However, were this line to ‘tunnel’ through to the point (1/2, φma),
its close proximity to the momentum line would render planes only weakly metastable to
registration by the momentum.

For higher volume fractions, φ > φma , we have seen from P(q, τ < τm) that the
non-steady motion is no longer random in the interval τm . Thus, any structures, files,
planes or isotropic structures, that pass beyond φma are systematically bound by the liquid’s
vorticity. Consequently, the colloidal fluid with a volume fraction greater than φma is
unstable to crystallization. Note also, in figure 11, that the momentum line intercepts the
line ν

(1)

2 (φ) at φga . This provides another mechanism by which the unphysical extrapolation,
ν

(1)

2 (φX = 0.8398) = 0, is avoided.
By rule (iv) the system is unable to equilibrate in any way when φ > φma . The line ν = 1

is excluded from this region by the momentum line. This simply means that the crystal is
infinite in extent and the average over orientations required for equation (1) cannot be fulfilled.

One of the questions about the hard-sphere suspensions is: what makes them so resilient
to crystallization at volume fractions (φ > φma) where we have just argued they should be
unstable to it?

The discussion so far assumes that the suspended spheres are identical. However, one
expects, when there is a (small) distribution of particle radii, that regular configurations will
take longer to form and will, therefore, be less probable in three dimensions than in two
dimensions. And the latter are less probable than one-dimensional structures. Turning this
reasoning around, the relative probabilities of finding regular files, planes and clusters are
larger in a polydisperse system than they are in a strictly monodisperse system.

One consequence, seen in figure 4, is that the curve ν
(1)
1 is enhanced. Another consequence

is that the efficacy of the liquid’s vorticity in binding structures in three dimensions is impaired.
One expects this, in turn, to enhance the lifetime of the metastable colloidal fluid in the
coexistence region and provide it with a degree of (meta)stability at higher volume fractions.
A third consequence is that the curve of planes, ν

(1)

2 , has weighting that it would not have for
a monodisperse suspension. Persistence of this curve beyond φma carries the GT to a volume
fraction higher than φga . This provides a possible qualitative explanation for the difference,
noted above, between φga and the volume fraction, φg , of the observed GT. It may also explain
why we find that colloidal glasses ultimately crystallize and do so by forming large crystals
that appear to be seeded by planes [26].

We close by listing a few issues that we hope to address in the future:
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(i) There are interruption points and loops in figure 11 not considered above but which warrant
explanation.

(ii) The scheme presented in figure 11 is still incomplete. It does not consider the energy
source of the fluctuations.

(iii) The above must be augmented by the coherent ISF. This may give the analyses and
interpretations the spatial context that they currently lack.

(iv) Description of the key features of the fluctuations, pointed out above, is not possible
without consideration of feedback that is non-local in space and time. Mode-coupling
theories satisfy this requirement in principle.
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